Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Authors
Abstract:
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost function is proposed in order to incorporate sparsity which is controlled by a specific parameter and weights of feature coefficients. This method extracts highly localized patterns, which generally improves the capability of face recognition. After extracting patterns by IWNS-NMF, we use principle component analysis to reduce dimension for classification by linear SVM. The Recognition rates on ORL, YALE and JAFFE datasets were 97.5, 93.33 and 87.8%, respectively. Comparisons to the related methods in the literature indicate that the proposed IWNS-NMF method achieves higher face recognition performance than NMF, NS-NMF, Local NMF and SNMF.
similar resources
LDA-based Non-negative Matrix Factorization for Supervised Face Recognition
In PCA based face recognition, the basis images may contain negative pixels and thus do not facilitate physical interpretation. Recently, the technique of nonnegative matrix Factorization (NMF) has been applied to face recognition: the non-negativity constraint of NMF yields a localized parts-based representation which achieves a recognition rate that is on par with the eigenface approach. In t...
full textNon-negative matrix factorization framework for face recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method which adds a non-negativity constraint to matrix factorization. NMF is compatible with the intuitive notion of combining parts to form a whole face. In this paper, we propose a framework of face recognition by adding NMF constraint and classifier constraints to matrix factorization to get both intuitive features...
full textA Weighted Non-Negative Matrix Factorization for Local Representations
This paper presents an improvement of the classical Non-negative Matrix Factorization (NMF) approach, for dealing with local representations of image objects. NMF, when applied to global data representations such as faces presents a high ability to represent local features of the original data in an unsupervised way. However, when applied to local representations NMF generates redundant basis. ...
full textNon-negative Matrix Factorization for Face Illumination Analysis
Changing illumination causes severe problems for face recognition in uncontrolled environments. It might be helpful for illumination invariant face recognition if information about the illumination can be recovered from the given face image. In this paper an illumination classification method based on Non-negative Matrix Factorization(NMF) is proposed. The traditional NMF approach together with...
full textA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
full textMy Resources
Journal title
volume 31 issue 10
pages 1698- 1707
publication date 2018-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023